Abstract

The transition zone (TZ) is a specialized compartment found at the base of cilia, adjacent to the centriole distal end, where axonemal microtubules (MTs) are heavily cross-linked to the surrounding membrane to form a barrier that gates the ciliary compartment. A number of ciliopathy molecules have been found to associate with the TZ, but factors that directly recognize axonemal MTs to specify TZ assembly at the cilia base remain unclear. Here, through quantitative centrosome proteomics, we identified an axoneme-associated protein, CEP162, tethered specifically at centriole distal ends to promote TZ assembly. CEP162 interacts with core TZ components, and mediates their association with MTs. Loss of CEP162 arrests ciliogenesis at the stage of TZ assembly. Abolishing its centriolar tethering, however, allows CEP162 to stay on the growing end of the axoneme, and ectopically assemble TZ components at cilia tips. This generates extra-long cilia with strikingly swollen tips that actively release ciliary contents into the extracellular environment. CEP162 is thus an axoneme-recognition protein “pre-tethered” at centriole distal ends prior to ciliogenesis to promote and restrict TZ formation specifically at the cilia base.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call