Abstract

The green synthesis process of photocatalytic ammonia production has received more and more attentions. Herein, a Z-scheme heterojunction with all-solid-state structures is constructed, in which carbon dots can act as electron transferring mediators. The photocatalytic measurement shows that the modified photocatalysts exhibit much higher activities, in which the ammonia production rates can reach above 232 µmol·gcal-1·h−1 under the light irradiation. The improved catalytic properties can be credited to the significantly increased number of photoinduced oxygen vacancies, the excellent visible-light adsorption abilities and photogenerated electron-hole separation efficiencies for the carbon dots bridged heterostructures. More hydroxyl and superoxide radicals can be simultaneously produced in the composites. This work provides reasonable guidance for applications in photocatalytic ammonia synthesis and a promising construction strategy of efficient Z-scheme photocatalysts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call