Abstract

CeO2 nanoparticle-loaded MnO2 nanoflowers, prepared by a hydrothermal method followed by an adsorption-calcination technique, were utilized for selective catalytic reduction (SCR) of NOx with NH3 at low temperatures. The effects of Ce/Mn ratio and thermal calcination temperature on the NH3–SCR activity of the CeO2-MnO2 nanocomposites were studied comprehensively. The as-prepared CeO2-MnO2 catalysts show high NOx reduction efficiency in the temperature range of 150–300 °C, with a complete NOx conversion at 200 °C for the optimal sample. The excellent NH3–SCR performance could be ascribed to high surface area, intimate contact, and strong synergistic interaction between CeO2 nanoparticles and MnO2 nanoflowers of the well-designed composite catalyst. The in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTs) characterizations evidence that the SCR reaction on the surface of the CeO2-MnO2 nanocomposites mainly follows the Langmuir–Hinshelwood (L-H) mechanism. Our work provides useful guidance for the development of composite oxide-based low temperature NH3–SCR catalysts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.