Abstract
Frustrated Lewis pairs (FLPs), discovered in the last few decades for homogeneous catalysts and in the last few years also for heterogeneous catalysts, are stimulating the scientific community's interest for their potential in small-molecule activation. Nevertheless, how an FLP activates stable molecules such as CO2 is still undefined. Through a careful spectroscopic study, we here report the formation of FLPs over a highly defective CeO2 sample prepared by microwave-assisted synthesis. Carbon dioxide activation over FLP is shown to occur through a bidentate carbonate bridging the FLP and implying a Ce3+-to-CO2 charge transfer, thus enhancing its activation. Carbon dioxide reaction with methanol to form monomethylcarbonate is here employed to demonstrate active roles of FLP and, eventually, to propose a reaction mechanism clarifying the role of Ce3+ and oxygen vacancies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.