Abstract

Cerium oxide (CeO2), one of the most significant rare-earth oxides, has attracted considerable interest over the past decades. This is primarily due to the ease in Ce3+/Ce4+ redox ability as well as other factors that affect the efficacy of CeO2 and CeO2-based materials. CeO2 and CeO2-based materials have shown enhanced responses in catalytic and photocatalytic activities for environmental and biological applications. In addition, the formation of Ce3+ and oxygen vacancies in CeO2 has aided in enhancing CeO2 activities. In order to produce oxygen-deficient CeO2 and CeO2-based materials, a variety of synthesis methods were used and are highlighted in this review. Therefore, this review compiles and discusses the mechanisms that involve oxygen vacancies, defects, and Ce3+ formation for environmental applications, such as photocatalytic dye degradation, photocatalytic CO2 reduction, and non-colored pollutants removal. The biological applications of CeO2, such as antioxidant enzyme mimetic, antioxidant reactive oxygen species/reactive nitrogen species, and antimicrobial activities, are also discussed. Additionally, future prospects are also suggested for future development and detailed investigations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.