Abstract

T cells rapidly reposition their centrosome to the center of the immunological synapse (IS) to drive polarized secretion in the direction of the bound target cell. Using an optical trap for spatial and temporal control over target presentation, we show that centrosome repositioning in Jurkat T cells exhibited kinetically distinct polarization and docking phases and required calcium flux and signaling through both the T cell receptor and integrin to be robust. In "frustrated" conjugates where the centrosome is stuck behind the nucleus, the center of the IS invaginated dramatically to approach the centrosome. Consistently, imaging of microtubules during normal repositioning revealed a microtubule end-on capture-shrinkage mechanism operating at the center of the IS. In agreement with this mechanism, centrosome repositioning was impaired by inhibiting microtubule depolymerization or dynein. We conclude that dynein drives centrosome repositioning in T cells via microtubule end-on capture-shrinkage operating at the center of the IS and not cortical sliding at the IS periphery, as previously thought.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.