Abstract
In many dynamic hand gesture recognition contexts, time information is not adequately used. The extracted features of dynamic gestures usually do not carry explicit information about time in gesture classification. This results in under-utilized data for more important accurate classification. Another disadvantage is that the gesture classification is then confined to only simple gestures. We have overcome these limitations by introducing centroid tracking of hand gestures that captures and retains the time sequence information for feature extraction. This simplifies the classification of dynamic gestures as movement in time helps efficient classification without burdensome processing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.