Abstract
Most CCD imaging detectors integrated microlens arrays (MLAs) to increase fill factor and sensitivity. However, they also introduce spot calibration issues with the inconsistency of spot geometry center and intensity distribution center. We setup theoretical and experimental models to research the problem of centroid shifting. According to the Seidel and Zernike coefficients of the optical model, we analyze main aberrations of microlens. In “Chief Ray” and “Centroid” reference frames, centroid shift numerical value is calculated with Geometric Ensquared Energy (GEE). Based on pentaprism test for 8.4m mirror segment, we conduct spot imaging experiment in interference system. Spots images are obtained, and two-dimensional centroid algorithm processing is performed on them to get the analog experiment values of centroid movements. The results show that the MLA placed in KAI‐16000 imaging detector causes the spot centroid to move. When there is a 14° (or −14°) angle of incident ray, the shifting values are about 1.46μm in simulation and 2.18μm in experiment. Our research makes a contribution to the compensation of calibrated error in metrology technology. We also prove that a significant portion of the shift comes from the low order aberration of microlens.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.