Abstract

A Centroid Neural Network with Weighted Features (CNN-WF) is proposed and presented in this paper. The proposed CNN-WF is based on a Centroid Neural Network (CNN), an effective clustering tool that has been successfully applied to various problems. In order to evaluate the importance of each feature in a set of data, a feature weighting concept is introduced to the Centroid Neural Network in the proposed algorithm. The weight update equations for CNN-WF are derived by applying the Lagrange multiplier procedure to the objective function constructed for CNN-WF in this paper. The use of weighted features makes it possible to assess the importance of each feature and to reject features that can be considered as noise in data. Experiments on a synthetic data set and a typical image compression problem show that the proposed CNN-WF can assess the importance of each feature and the proposed CNN-WF outperforms conventional algorithms including the Self-Organizing Map (SOM) and CNN in terms of clustering accuracy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.