Abstract

This paper presents an efficient and straightforward methodology with less computational complexities to title the bi-level objective linear fractional programming problem with fuzzy interval coefficients (BILOLFPP with FIC). To construct the methodology, the concept of mean technique is utilized to tackle the fuzzy numbers in addition to adding to α = [mean (ai) , mean (bi)] , i = 1, …, n, then. Accordingly, the fuzzy programming issue is converted into a single objective linear fractional programming problem (SOLFPP with FIC) by the utilize of weight function. The fuzzy technique has significant structural transform metamorphosis during the recent decades. Numerous to mention introduced have been undertaken to explanation fuzzy methodology for linear, non-linear programming issues. While, the previous finding that introduced have been conflicting, recent studies of competitive situations indicate that LFPP with fuzzy interval coefficients (LFPP with FIC) has an advantageous effect mostly on comparison situation. One of the suggestions which we found is interval approximations, closed interval approximation of sequential fuzzy number for resolving fuzzy number LFPP without changing it to a crisp issue. A new variant of modified simplex methodology is studied here just for resolving fuzzy number LFPP utilizing fuzzy arithmetic. Consequently, fuzzy representation of some important theories of fuzzy LFPP has been reproved. A fuzzy LFPP with FIC is worked out as numerical examples illustrate to the suggested methodology. On iterative processes, it decreases the overall processing time to explain, the modified simplex methodology for solving BILLFPP with FIC with out to crisp by taking numerical examples and compare with Nasseri, Verdegay and Mahmoudi methodology changing it to a crisp issue [9].

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call