Abstract
We consider non-degenerate centro-affine hypersurface immersions in $$\mathbb R^n$$ whose cubic form is parallel with respect to the Levi-Civita connection of the affine metric. There exists a bijective correspondence between homothetic families of proper affine hyperspheres with center in the origin and with parallel cubic form, and Köchers conic $$\omega $$ -domains, which are the maximal connected sets consisting of invertible elements in a real semi-simple Jordan algebra. Every level surface of the $$\omega $$ function in an $$\omega $$ -domain is an affine complete, Euclidean complete proper affine hypersphere with parallel cubic form and with center in the origin. On the other hand, every proper affine hypersphere with parallel cubic form and with center in the origin can be represented as such a level surface. We provide a complete classification of proper affine hyperspheres with parallel cubic form based on the classification of semi-simple real Jordan algebras. Centro-affine hypersurface immersions with parallel cubic form are related to the wider class of real unital Jordan algebras. Every such immersion can be extended to an affine complete one, whose conic hull is the connected component of the unit element in the set of invertible elements in a real unital Jordan algebra. Our approach can be used to study also other classes of hypersurfaces with parallel cubic form.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.