Abstract
Ultra-thin continuously reinforced concrete pavement (UTCRCP) is an innovative pavement type that consists of a 50 mm high strength steel fibre reinforced concrete (HS-SFRC) layer overlain on a pavement substructure. The thickness results in a flexural stiffness significantly smaller than for conventional concrete pavements. In this paper, the conceptual understanding of the response of UTCRCP to traffic loading was investigated using centrifuge modelling. Simplified pavement models were subjected to a bidirectional moving axle load. The results indicated that axle loading, and not single wheel loading, should be used to investigate the response of UTCRCP as there is significant interaction in substructure deformation caused by the wheels on the ends of an axle. Due to the flexural toughness of the highly reinforced concrete layer, a gap forms between the ultra-thin HS-SFRC overlay and its substructure. Brittle, cemented bases between the HS-SFRC overlay and subgrade should be used with caution, as the flexible nature of the layers above and below the stabilised layer may result in rapid degeneration of the brittle layer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Physical Modelling in Geotechnics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.