Abstract
Dramatic failure of pile foundations caused by the soil liquefaction was founded leading to many studies for investigating the seismic behavior of pile. The failures were often accompanied with settlement, lateral displacement and tilting of superstructures. Therefore soil-structure interaction effects must be properly considered in the pile design. Two tests by using the centrifuge shaking table were conducted at an acceleration field of 80 g to investigate the seismic response of piles attached with different tip mass and embedded in liquefied or non-liquefied deposits during shaking. It was found that the maximum bending moment of pile occurs at the depth of 4 m and 5 m for dry sand and saturated sand models, respectively. The more tip mass leads to the more lateral displacement of pile head and the more residual bending moment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.