Abstract

Three dynamic centrifuge model tests were conducted at an acceleration of 80g to simulate the seismic responses of level sand deposits: an intra-silt layer was embedded in two of these sand deposits at different depths. The effects of a low-permeability intra-silt layer on the build-up and dissipation of excess pore-water pressure, surface settlement, and the related liquefaction mechanism were investigated. An intra-silt layer modifies the seismic response of the sand deposit, reduces the extent of liquefaction, and thus decreases surface settlement. The depth of the intra-silt layer is one of the factors influencing the seismic responses of the sand deposits. The magnitude of the surface settlement is proportional to the degree of liquefaction in the sand deposit. The high positive hydraulic gradients appearing in both the intra-silt layer and in the sand deposit lying on the intra-silt layer can break a thinner or weaker top layer and result in sand boiling. Our visual animation of the ratio of the excess pore-water pressure and the lateral displacement revealed that the liquefaction front travels upward during shaking and the solidification front travels upward after shaking.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.