Abstract

Bridges that cross navigable waterways may be affected by accidental ship impacts. To better characterize ship impact loads on bridge pier structures, a comprehensive centrifuge model test program involving 48 ship impact tests was performed on a 2 x 3 pile group and a 3 x 3 pile group founded in saturated silty sand. These model tests simulated groups of 2-m-diameter by 31.5-m-long pipe piles. The effects of three factors related to the ship (tonnage, speed, and bow structure) and two factors related to the bridge pier structure (superstructure mass and pile-group size) were investigated through these impact tests. The characteristics of the ship impact load were identified and the mechanism of the ship-bridge collision was analyzed. The test results show that the ship impact load was highly dependent on the ship bow structure and the ship impact speed. The test results were compared with other published data and the AASHTO loads. An empirical equation was suggested to relate the ship impact load to the five influencing factors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call