Abstract

To evaluate the lateral resistance of rigid monopiles for wind turbines in dense sand under lateral cyclic loading, centrifuge model tests are performed, focusing on the base resistance and degradation of the soil resistance under two-way lateral cyclic loading in the short-term. The slenderness ratio (embedded pile length to diameter) is varied from 3.75 to 8 and the loading frequency is in the range of 0.002 to 0.4 Hz in the prototype scale. Under cyclic loading with a maximum horizontal displacement of 5% of the pile diameter, the build-up of excess pore water pressure is observed, but the maximum value of the average excess pore water pressure ratio is around 50% in the steady-state for dense sand whose relative density is 80%. A simple analytical model for the rigid piles, considering the base resistance, is derived and then used to quantify the significance of the resistance at the pile base and the degradation of the soil resistance under cyclic loading. When the slenderness ratio is less than 5, a significant contribution of the moment resistance at the base is confirmed. The estimation of the degradation of the horizontal subgrade reaction coefficient using the simple analytical model suggests that, through cyclic shear tests for the determination of the deformation properties of the soil in a laboratory, it is possible to estimate the degradation of the soil stiffness and the parameters for the reduced sway-rocking type of foundation model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.