Abstract

Anchor-type foundations are one of the foundation types used in structures subject to tensile forces. These anchors are generally designed according to the weight of the soil on them depending on the depth they are buried at and the frictional resistance obtained from the failure surfaces during failure. One method of increasing the uplift capacity of the foundation without increasing the burial depth is the use of geogrid material. In this study, the uplift capacities of strip anchor plates at different embedment depths were investigated by considering the geogrid effect placed in different combinations. The aim of the study is to investigate whether a more economical solution can be obtained by using geogrid without increasing the embedment depth of the anchor plate. Experiments were carried out using centrifugal experimental setup, which gives values closer to the real results. The tests were performed on sand of two different densities for anchor burial depths H/B = 2 and H/B = 5. According to the results, the uplift capacity is significantly improved when geogrid is used. As the reinforcement configuration, the use of a single geogrid layer placed just above the anchor plate with an inclination angle of 45 degrees gave more effective results than using the geogrid horizontally and vertically. In the study, up to 98% increases in uplift capacity were obtained with reinforcement. In addition, the prototype model was analyzed with a numerical program based on the finite element method, and the results were compared with the experimental results. As a result of the comparison, it was observed that the experimental and numerical results were compatible with each other. Suggestions for practice are presented using the results obtained.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.