Abstract

A series of centrifuge model tests has been conducted to investigate the bearing resistance of spudcan foundations of offshore jack-up rigs in sand overlying normally consolidated clay. The spudcan bearing-resistance profiles measured in most of the tests recorded a peak resistance at a shallow depth within the upper sand layer, followed by an abrupt post-peak reduction in resistance causing the spudcan to plunge into the underlying soft clay. This phenomenon is commonly termed as ‘spudcan punch-through hazard', which potentially leads to severe structural damage of jack-up rigs in the field. The centrifuge test results revealed that the ratio of upper sand layer thickness over spudcan diameter and the ratio of bearing resistance between the upper sand and underlying clay affect the development of spudcan bearing resistance. The limitations of existing design methods, which were derived for the ultimate bearing capacity of pre-embedded shallow foundation to assess the spudcan bearing resistance-depth profile, are also identified. It is proposed that the profile may be assessed by focusing on three key characteristic bearing resistances.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call