Abstract

Centrifuge tests were used to study the dynamic behavior of soil slopes reinforced with geosynthetics and metal grids. The main objectives were to determine the failure mechanism and amount of deformations under seismic loading and to identify the main parameters controlling seismically induced deformations. Geosynthetically reinforced soil slopes (2V:1H) and vertical walls reinforced with metallic mesh strips were subjected to earthquake motions with maximum foundation accelerations of up to 1.08g. The experimental results show that slope movement can occur under relatively small base accelerations, and significant lateral and vertical deformations can occur within the reinforced soil mass under strong shaking. However, no distinct failure surfaces were observed, and the magnitude of deformations is related to the backfill density, reinforcement stiffness and spacing, and slope inclination.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call