Abstract

Suspension freeze desalination is a promising route for treatment of high salinity wastewater, but the poor ice-concentrate separation often generates decrease of desalination efficiency. In this work, it is demonstrated that centrifugation forced dewatering can assist in ice purification and enhance suspension freeze desalination performance. The positive correlation and good linear fitting relationship between ice purity and dewatering rate were identified at various centrifugation speeds, centrifugation time, and ice layer thickness. Changes of ice shape were recorded by low-temperature optical microscope observation system. The free water removal and ice floc destruction induced by centrifugal field have an important contribution to ice purification. Increasing centrifugation speed from 100 r/min to 500 r/min, the corresponding relative centrifugal force increased 27-fold, creating sharp increases in ice purity (rate constant k = 0.1605) and dewatering rate (rate constant D = 0.0563). Due to the strong binding characteristics and small portion of bound water, ice desalination efficiency per unit centrifugal force dropped when centrifugation speed increased from 1000 r/min to 3000 r/min. Besides, the multi-step dewatering and purification mechanism involved in ice centrifugation was depicted. The suspension freeze technology hybrid with centrifugation not only enhances desalination efficiency but also is beneficial to obtain high-purity ice.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call