Abstract

Carbon nanofibers, due to their high electric conductivity and excellent mechanical strength, have been studied and applied in areas such as energy storage, tissue engineering, filtration, and catalysis. So far, carbon nanofibers have been mainly produced by electrospinning and subsequent heat treatments. However, the great difficulty of carbon nanofibers to be scaled up through electrospinning confines the productivity and practical application of this extensively investigated material category. Recently, centrifugal spinning has drawn attention due to its high production rate (500 times faster than traditional electrospinning), simple set-up, and ease of scaling-up. Herein, tin-containing carbon nanofibers were prepared by facile centrifugal spinning from tin chloride-polyacrylonitrile precursor solutions and subsequent thermal treatments. Polymer-salt-solvent relations and resultant rheological effects upon solution properties and fiber structures were discussed, and the performance of centrifugally spun tin-containing carbon nanofibers as anode material for lithium-ion batteries was evaluated. An excellent reversible capacity of 607 mAh g−1 was achieved at the initial cycle and a relatively high specific capacity of 430 mAh g−1 was maintained after 100 cycles. It is, therefore, demonstrated that centrifugal-spun tin-containing carbon nanofibers are promising anode material for lithium-ion batteries, and centrifugal spinning, as a nanofiber fabrication alternative to electrospinning, shows great potential in large-scale nanofiber production.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.