Abstract

Levitated optomechanical systems experience a tremendous development on detecting weak force and torque with the center of mass motion and rotation of the levitated particle. Here the levitated optomechanical system is established on a rotating platform, and the centrifugal motion of the particle is observed after rotating the optical platform. The centrifugal displacement of the particle is experimentally proven to show a quadratic function relation with the rotation speed, and the stiffness of the trap and the mass of the levitated particle are obtained from it separately. Furthermore, the centrifugal motion makes the particle deviate from the laser focus center, which would decrease the particle spin speed. These results will help to understand the centrifugal motion and fully consider this effect when the optomechanical system rotates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.