Abstract

Nickel sesquioxide (Ni2O3) nanoparticles were synthesized using centrifugal microfluidics in the present study. The obtained nanoparticles were characterized using SEM to investigate their morphology and microstructure, and XRD was employed to analyze their purity. The nanoparticle size data were measured and analyzed using ImageJ (v1.8.0) software. The flow process and mixing procedure were monitored through computational fluid dynamics simulation. Among the synthesized Ni2O3 nanoparticles, those obtained at the rotation speed of 1000 rpm for 10 min with angular acceleration of 4.2 rad/s2 showed the best performance in terms of high purity, complete shape and microstructure, small diameter, and narrow diameter distribution. The experimental results demonstrate that the rotation speed of the microfluidic chip and reaction time contribute to a decrease in particle diameter and a narrower diameter distribution range. In contrast, an increase in acceleration of the rotation speed leads to an expanded nanoparticle size range and, thus, a wider distribution. These findings contribute to a comprehensive understanding of the effects exerted by various factors in centrifugal microfluidics and will provide new insights into nanoparticle synthesis using centrifugal microfluidic technology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.