Abstract
An oscillating flow over a sandy beach can initiate and enhance the formation of bed ripples, with crests perpendicular to the direction of the ambient oscillation. Under certain circumstances, bridges may develop to span adjacent ripple crests, resulting in a brick pattern. It has been suggested that the onset of this transition is due to a three-dimensional centrifugal instability of an otherwise two-dimensional flow over periodic long-crested ripples. Here we analyse theoretically such an instability by assuming that the ripples are rigid and smooth. Two complementary cases are studied. We first consider a weak ambient oscillation over ripples of finite slope in Case (i). The three-dimensional disturbance is found to be localized in a small region either along the crests or along the troughs. In Case (ii) we analyse finite oscillations over ripples of mild slope. The region influenced by the instability is now comparable with a ripple wavelength and the unstable disturbance along adjacent ripples may interact with each other. Four types of harmonic and subharmonic instabilities are found. The associated steady streaming close to the ripple surface shows various tendencies of possible sand accumulations, some of which appear to be qualitatively relevant to the initiation of brick-patterned ripples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.