Abstract

A bead mill is commonly used to produce nanomaterials. The design of the bead mill rotor is an important factor in efficient nanomaterial production to avoid re-agglomeration. We investigated the effect of bead-mill rotor shape on the dispersion state using experimental tests and the discrete-element method (DEM) coupled with computational fluid dynamics (CFD) simulations. Experimental results using TiO2 in the bead mill showed that the high rotor rotation speed caused TiO2 particles re-agglomeration, and a sharp particle-size distribution was obtained by dispersion with a mill with a wide gap between the rotor and the chamber. To evaluate the dispersion performance, bead collisions were analyzed using the DEM-CFD simulation. The simulation results indicated that an increase in bead-collision energy lead to damage of the TiO2 primary particles and re-agglomeration at a high rotation speed. A uniform dispersion was achieved when the frequency of high-energy collision between the particle and wall decreased and a small standard deviation of the collision energy frequency was obtained by the mill with a wide gap. These simulation results correlate with the experimental results. Therefore, this study shows that the DEM-CFD simulation could contribute to an appropriate rotor design for uniform dispersion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.