Abstract

Dewatering of plastic films is a highly energy-consuming recycling operation that largely affects the quality of the recycled product. Despite the importance of good drying, this operation has not been studied at laboratory or pilot plant scale. In this work, the mechanical dewatering of blown film grade high density polyethylene has been assessed by using a laboratory centrifuge. It is suggested that a plastic cake is formed under the centrifugal forces similar to the sludge cake after the filtration process. The water is retained within the plastic cake due to three phenomena: free water within the cake pores and voids, water maintained by capillarity (superficial and pendular) and water trapped due to the tortuosity of the plastic mass. The total moisture is a sum of an equilibrium moisture and a transient moisture. The equilibrium moisture depends on the centrifugal force (G) but it is independent of time. Conversely, the transient moisture is reliant on both the G-force and the centrifugation time. The experimental results showed that an optimum side length exists. The moisture content is minimized when the flake side lies between 1 and 2 cm. Finally, it has been found that the moisture content is a function of the plastic surface. Hence, the specific moisture content (the mass of water per total plastic surface) should be calculated to compare films with uneven thickness or made of different materials. In sum, the outcomes of this study may be fundamental for the further and more extensive research into the plastic films dewatering processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call