Abstract

The supercritical CO2 (sCO2) Brayton cycle has been attracting much attention to produce the electricity power, chiefly due to its higher thermal efficiency with the relatively lower temperature at the turbine inlet compared to other common energy conversion cycles. Centrifugal compressor operating conditions in the supercritical Brayton cycle are commonly set in vicinity of the critical point, owing to smaller compressibility factor and eventually lower compressor work. This paper investigates and compares different centrifugal compressor design methodologies in close proximity to the critical point and suggests the most accurate design procedure based on the findings. An in-house mean-line design code, which is based on the individual enthalpy loss models, is compared to stage efficiency correlation design methods. Moreover, modifications are introduced to the skin friction loss calculation to establish an accurate one-dimensional design methodology. Moreover, compressor performance is compared to the experimental measurements.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call