Abstract

Strongly Doppler-shifted Stokes $V$ profiles have been detected in the quiet Sun with the IMaX instrument on-board the SUNRISE stratospheric balloon-borne telescope. High velocities are required in order to produce such signals, hence these events have been interpreted as jets, although other sources are also possible. We aim to characterize the variation of the main properties of these events (occurrence rate, lifetime, size and velocities) with their position on the solar disk between disk centre and the solar limb. These events have been identified in Sunrise/IMaX data according to the same objective criteria at all available positions on the solar disk. Their properties were determined using standard techniques. Our study yielded a number of new insights into this phenomenon. Most importantly, the number density of these events is independent of the heliocentric angle, i.e. the investigated supersonic flows are nearly isotropically distributed. Size and lifetime are also nearly independent of the heliocentric angle, while their intensity contrast increases towards the solar limb. The Stokes $V$ jets are associated with upflow velocities deduced from Stokes $I$, which are stronger towards the limb. Their intensity decreases with time, while their line-of-sight (LOS) velocity does not display a clear temporal evolution. Their association with linear polarization signals decreases towards the limb. The density of events appears to be independent of heliocentric angle, establishing that they are directed nearly randomly. If these events are jets triggered by magnetic reconnection between emerging magnetic flux and the ambient field, then our results suggest that there is no preferred geometry for the reconnection process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call