Abstract
We review and introduce several approaches to the study of centralizer algebras of the infinite symmetric group $S_{\infty}$. Our work is led by the double commutant relationship between finite symmetric groups and partition algebras; in the case of $S_{\infty}$, we obtain centralizer algebras that are contained in partition algebras. In view of the theory of symmetric functions in non-commuting variables, we consider representations of $S_{\infty}$ that are faithful and that contain invariant elements; namely, non-unitary representations on sequence spaces. Nous Ă©tudions les algĂšbres du centralisateur du groupe symĂ©trique infini $S_{\infty}$, passant en revue certaines approches et en introduisant de nouvelles. Notre travail est basĂ© sur la relation du double commutant entre le groupe symĂ©trique fini et les algĂšbres de partition; dans le cas de $S_{\infty}$, nous obtenons des algĂšbres du centralisateur contenues dans les algĂšbres de partition. Compte tenu de la thĂ©orie des fonctions symĂ©triques en variables non commutatives, nous considĂ©rons les reprĂ©sentations de $S_{\infty}$ qui sont fidĂšles et contiennent les invariants; câest-Ă -dire, les reprĂ©sentations non unitaires sur les espaces de suites.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Discrete Mathematics & Theoretical Computer Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.