Abstract
This paper considers a distributed storage system, where multiple storage nodes can be reconstructed simultaneously at a centralized location. This centralized multi-node repair (CMR) model is a generalization of regenerating codes that allow for bandwidth-efficient repair of a single failed node. This work focuses on the trade-off between the amount of data stored and repair bandwidth in this CMR model. In particular, repair bandwidth bounds are derived for the minimum storage multi-node repair (MSMR) and the minimum bandwidth multi-node repair (MBMR) operating points. The tightness of these bounds are analyzed via code constructions. The MSMR point is characterized through codes achieving this point under functional repair for general set of CMR parameters, as well as with codes enabling exact repair for certain CMR parameters. The MBMR point, on the other hand, is characterized with exact repair codes for all CMR parameters for systems that satisfy a certain entropy accumulation property.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.