Abstract
Cell-free Massive MIMO systems consist of a large number of geographically distributed access points (APs) that serve users by coherent joint transmission. Downlink power allocation is important in these systems, to determine which APs should transmit to which users and with what power. If the system is implemented correctly, it can deliver a more uniform user performance than conventional cellular networks. To this end, previous works have shown how to perform system-wide max-min fairness power allocation when using maximum ratio precoding. In this paper, we first generalize this method to arbitrary precoding, and then train a neural network to perform approximately the same power allocation but with reduced computational complexity. Finally, we train one neural network per AP to mimic system-wide max-min fairness power allocation, but using only local information. By learning the structure of the local propagation environment, this method outperforms the state-of-the-art distributed power allocation method from the Cell-free Massive MIMO literature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.