Abstract

Given a set of demands between pairs of nodes, we examine the traffic engineering problem of flow routing and fair bandwidth allocation where flows can be split to multiple paths (e.g., MPLS tunnels). This paper presents an algorithm for finding an optimal and global per-commodity max-min fair rate vector in a polynomial number of steps. In addition, we present a fast and novel distributed algorithm where each source router can find the routing and the fair rate allocation for its commodities while keeping the locally optimal max-min fair allocation criteria. The distributed algorithm is a fully polynomial epsilon-approximation (FPTAS) algorithm and is based on a primal-dual alternation technique. We implemented these algorithms to demonstrate its correctness, efficiency, and accuracy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.