Abstract

In this paper, we explore centralized and more decentral approaches to succeed the energiewende in Germany, in the European context. We use the AnyMOD framework to model a future renewable-based European energy system, based on a techno-economic optimization, i.e. cost minimization with given demand, including both investment and the subsequent dispatch of capacity. The model includes 29 regions for European countries, and 38 NUTS-2 regions in Germany. First the entire energy system on the European level is optimized. Based on these results, the electricity system for the German regions is optimized to achieve great regional detail to analyse spatial effects. The model allows a comparison between a stylized central scenario with high amounts of wind offshore deployed, and a decentral scenario using mainly the existing grid, and thus relying more on local capacities. The results reveal that the cost for the second optimization of these two scenarios are about the same: The central scenario is characterized by network expansion in order to transport the electricity from the wind offshore sites, whereas the decentral scenario leads to more photovoltaic and battery deployment closer to the areas with a high demand for energy. A scenarios with higher energy efficiency and lower demand projections lead to a significant reduction of investment requirements, and to different localizations thereof.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.