Abstract

In this chapter, the author analyzes the assortativity of real-world networks based on centrality metrics (such as eigenvector centrality, betweenness centrality, and closeness centrality) other than degree centrality. They seek to evaluate the levels of assortativity (assortative, dissortative, neutral) observed for real-world networks with respect to the different centrality metrics and assess the similarity in these levels. The author observes real-world networks are more likely to be neutral (neither assortative nor dissortative) with respect to both R-DEG and BWC, and more likely to be assortative with respect to EVC and CLC. They observe the chances of a real-world network to be dissortative with respect to these centrality metrics to be very minimal. The author also assesses the extent to which they can use the assortativity index (A.Index) values obtained with a computationally light centrality metric to rank the networks in lieu of the A.Index values obtained with a computationally heavy centrality metric.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.