Abstract
Complex Network Theory (CNT) studies theoretical and physical systems as networks, considering their features deriving from the internal connectivity between elements defined as vertex and links. In order to quantify the importance of these elements in real networked systems, researches proposed several centrality metrics.The use of CNT centrality metrics for analysis, planning and management of infrastructure networks (streets, water systems, etc.), for example in terms of reliability and vulnerability, is today a relevant issue also considering their influences in socio- economics and environmental matters. From CNT standpoint, water distribution networks (WDNs) are infrastructure networks that can be analyzed considering some peculiar features deriving from their spatial characteristics.The paper focuses on CNT centrality metrics and proposes novel hydraulic centrality metrics useful for understanding the WDNs behavior. Furthermore, the study is intended to evaluate the feasibility of coupling hydraulic and topologic centrality metrics based on links, in order to obtain information that are more useful from the hydraulic point of view. This way, centrality metrics of the CNT become a complementary tool to hydraulic modelling for WDNs analysis and management.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.