Abstract

The centrality dependence of the p/π ratio measured by the ALICE Collaboration in 5.02 TeV Pb-Pb collisions indicates a statistically significant suppression with the increase of the charged particle multiplicity once the centrality-correlated part of the systematic uncertainty is eliminated from the data. We argue that this behavior can be attributed to baryon annihilation in the hadronic phase. By implementing the BB¯↔5π reaction within a generalized partial chemical equilibrium framework, we estimate the annihilation freeze-out temperature at different centralities, which decreases with increasing charged particle multiplicity and yields Tann=132±5 MeV in 0-5% most central collisions. This value is considerably below the hadronization temperature of Thad∼160 MeV but above the thermal (kinetic) freeze-out temperature of Tkin∼100 MeV. Baryon annihilation reactions thus remain relevant in the initial stage of the hadronic phase but freeze out before (pseudo-)elastic hadronic scatterings. One experimentally testable consequence of this picture is a suppression of various light nuclei to proton ratios in central collisions of heavy ions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call