Abstract
This article combines the traditional definition of portfolio risk with minimum-spanning-tree-based “interconnectedness risk” to improve equal risk contribution portfolio performance. We use betweenness centrality to measure an asset’s importance in a market graph (network). After filtering the complete correlation network to a minimum spanning tree, we calculate the centrality score and convert it to a centrality heuristic. We develop an adjusted variance–covariance matrix using the centrality heuristic to bias the model to assign peripheral assets in the minimum spanning tree higher weights. We test this methodology using the constituents of the S&P 100 index. The results show that the centrality equal risk portfolio can improve upon the base equal risk portfolio returns, with a similar level of risk. We observe that during bear markets, the centrality-based portfolio can surpass the base equal risk portfolio risk.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.