Abstract

A novel central weighted essentially non-oscillatory (central WENO; CWENO)-type scheme for the construction of high-resolution approximations to discontinuous solutions to hyperbolic systems of conservation laws is presented. This procedure is based on the construction of a global average weight using the whole set of Jiang–Shu smoothness indicators associated to every candidate stencil. By this device one does not to have to rely on ideal weights, which, under certain stencil arrangements and interpolating point locations, do not define a convex combination of the lower-degree interpolating polynomials of the corresponding sub-stencils. Moreover, this procedure also prevents some cases of accuracy loss near smooth extrema that are experienced by classical WENO and CWENO schemes. These properties result in a more flexible scheme that overcomes these issues, at the cost of only a few additional computations with respect to classical WENO schemes and with a smaller cost than classical CWENO schemes. Numerical examples illustrate that the proposed CWENO schemes outperform both the traditional WENO and the original CWENO schemes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.