Abstract

This study investigates the contribution of central vasopressin receptors in the modulation of systolic arterial pressure (SAP) and heart rate (HR) response to air-jet stress in conscious Wistar rats equipped with a femoral arterial catheter and intracerebroventricular cannula using novel non-peptide and selective vasopressin V(1a) (SR49059) and V(1b) (SSR149415) antagonists. The effects of stress on SAP and HR were evaluated by measuring the maximal response to stress, the latency of the maximal response, the duration of the recovery period, and the increase in the low frequency (LF) short-term variability component. Stress induced a parallel and almost immediate increase in both SAP and HR, followed by enhanced LF SAP variability in the recovery period. Pretreatment of rats with V(1a) antagonist did not affect the maximal increase or the latency of SAP and HR response to acute stress, but shortened the recovery period of SAP and HR and prevented the increase in LF SAP. The V(1b) antagonist reduced the maximal increase in SAP without affecting HR and their latencies, shortened the recovery period of SAP and inhibited the increase in LF SAP variability. These results indicate that both central V(1a) and V(1b) receptors mediate cardiovascular changes induced by air-jet stress in conscious rats.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.