Abstract

We prove a generalization to the totally real field case of the Waldspurger’s formula relating the Fourier coefficient of a half integral weight form and the central value of the L-function of an integral weight form. Our proof is based on a new interpretation of Waldspurger’s formula as a combination of two ingredients – an equality between global distributions, and a dichotomy result for theta correspondence. As applications we generalize the Kohnen–Zagier formula for holomorphic forms and prove the equivalence of the Ramanujan conjecture for half integral weight forms and a case of the Lindelof hypothesis for integral weight forms. We also study the Kohnen space in the adelic setting.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.