Abstract
Inhibition of hypothalamic thyrotropin-releasing hormone (TRH) neuronal activity is a well-established adaptation to caloric restriction (CR) that suppresses pituitary secretion of thyroid-stimulating hormone, but may also participate in modulation of autonomic function. Thus, we hypothesized that decreased hypothalamic TRH activity contributes to CR-induced bradycardia and decreased metabolic rate. To test this hypothesis, male Sprague-Dawley rats were instrumented with telemetry devices for measurement of heart rate (HR) and blood pressure (BP) and a lateral intracerebroventricular (i.c.v.) guide cannula for central infusions. After recovery, rats were housed in metabolic chambers and given either ad libitum(ad-lib) or CR treatments for 7 days; half of each diet group was then given continuous i.c.v. infusions of TRH (25 nmol/h) or saline (0.25 µl/h) for 7 days via osmotic pump. This dose of TRH did not significantly alter peripheral free T<sub>4</sub> levels. In ad-lib rats, TRH infusion produced small reductions in food intake and small increases in HR and BP over saline-infused controls. In CR rats, TRH infusion resulted in an increase in HR and also energy expenditure over saline-infused controls. These results support the hypothesis that suppression of central TRH activity contributes to the homeostatic suppression of energy expenditure and HR observed during CR.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.