Abstract

In this work we present a new approach to the construction of high order finite volume central schemes on staggered grids for general hyperbolic systems, including those not admitting a conservation form. The method is based on finite volume space discretization on staggered cells, central Runge--Kutta time discretization, and integration over a family of paths, associated to the system itself, for the generalization of the method to nonconservative systems. Applications to the one- and two-layer shallow water models as prototypes of systems of balance laws and systems with source terms and nonconservative products, respectively, will be illustrated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.