Abstract

The translation of in vitro findings to clinical outcomes is often elusive. Trauma/hemorrhagic shock (T/HS) results in hepatic hypoxia that drives inflammation. We hypothesize that in silico methods would help bridge in vitro hepatocyte data and clinical T/HS, in which the liver is a primary site of inflammation. Primary mouse hepatocytes were cultured under hypoxia (1% O2) or normoxia (21% O2) for 1–72 h, and both the cell supernatants and protein lysates were assayed for 18 inflammatory mediators by Luminex™ technology. Statistical analysis and data-driven modeling were employed to characterize the main components of the cellular response. Statistical analyses, hierarchical and k-means clustering, Principal Component Analysis, and Dynamic Network Analysis suggested MCP-1/CCL2 and IL-1α as central coordinators of hepatocyte-mediated inflammation in C57BL/6 mouse hepatocytes. Hepatocytes from MCP-1-null mice had altered dynamic inflammatory networks. Circulating MCP-1 levels segregated human T/HS survivors from non-survivors. Furthermore, T/HS survivors with elevated early levels of plasma MCP-1 post-injury had longer total lengths of stay, longer intensive care unit lengths of stay, and prolonged requirement for mechanical ventilation vs. those with low plasma MCP-1. This study identifies MCP-1 as a main driver of the response of hepatocytes in vitro and as a biomarker for clinical outcomes in T/HS, and suggests an experimental and computational framework for discovery of novel clinical biomarkers in inflammatory diseases.

Highlights

  • Among many other functions, the liver plays a critical role in inflammation and innate immunity, processes that are controlled by multiple cell types including hepatocytes, Kupffer cells, and other non-parenchymal cells

  • This study identifies the chemokine Monocyte Chemoattractant Protein-1 (MCP-1/CCL2) as a main driver of the response of hepatocytes in vitro and as a biomarker for organ damage in clinical settings of trauma hemorrhagic shock (T/HS), and, more generally, suggests a pathway for combined experimental and computational studies to facilitate the discovery of novel clinical biomarkers of inflammation

  • MCP-1 is a central component of the dynamic, multidimensional response of hepatocytes to cell stress

Read more

Summary

Introduction

The liver plays a critical role in inflammation and innate immunity, processes that are controlled by multiple cell types including hepatocytes, Kupffer cells, and other non-parenchymal cells. At least 15 different cell types can be found in normal liver [1], hepatocytes constitute the largest pool of parenchymal cells, comprising approximately 60– 80% of the total liver cells [1,2]. Inflammatory conditions such as ischemia/reperfusion (I/R) and post-trauma hemorrhagic shock (T/HS) are associated with liver hypoxia [3,4]. The goal of the present study was to determine if combined in vitro/in silico studies could help elucidate key hepatic inflammatory mediators relevant to human T/HS. This study identifies the chemokine Monocyte Chemoattractant Protein-1 (MCP-1/CCL2) as a main driver of the response of hepatocytes in vitro and as a biomarker for organ damage in clinical settings of T/HS, and, more generally, suggests a pathway for combined experimental and computational studies to facilitate the discovery of novel clinical biomarkers of inflammation

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.