Abstract

Clostridium perfringens epsilon toxin (ETX) is a heptameric pore-forming toxin of the aerolysin toxin family. ETX is the most potent toxin of this toxin family and the third most potent bacterial toxin with high cytotoxic and lethal activities in animals. In addition, ETX shows a demyelinating activity in nervous tissue leading to devastating multifocal central nervous system white matter disease in ruminant animals. Pore formation in target cell membrane is most likely the initial critical step in ETX biological activity. Eight single to quadruple ETX mutants were generated by replacement of polar residues (serine, threonine, glutamine) in middle positions of the β-strands forming the β-barrel and facing the channel lumen with charged glutamic residues. Channel activity and ion selectivity were monitored in artificial lipid monolayer membranes and cytotoxicity was investigated in MDCK cells by the viability MTT test and propidium iodide entry. All the mutants formed channels with similar conductance in artificial lipid membranes and increasing cation selectivity for increasing number of mutations. Here, we show that residues in the central position of each β-strand of the amphipathic β-hairpin loop that forms the transmembrane pore, control the size and ion selectivity of the channel. While the highest cationic ETX mutants were not cytotoxic, no strict correlation was observed between ion selectivity and cytotoxicity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call