Abstract

In the past few years, insulin action in the central nervous system (CNS) has attracted a growing interest to better understand the association between neurodegenerative diseases and insulin resistance (IR). Rodent studies have indicated that insulin signaling in the CNS is critical for the suppression of endogenous glucose production (EGP) in the liver (1) and for the regulation of adipose tissue lipolysis (2). These central insulin effects likely depend on PI3K-mediated regulation of several proteins and transcription factors, among which are FoxO1 (3) and AMPK (4), and on the activation of KATP channels (5) in the hypothalamus (Fig. 1). Recent findings show that subsequent activation of hepatic Kupffer cells and an increase in hepatic interleukin-6 induce signal transducer and activator of transcription 3 (STAT3) phosphorylation to inhibit gluconeogenic gene expression (6). Suppression of lipolysis in adipose tissue by brain insulin signaling reduces the availability of gluconeogenic substrates for the liver, which will further decrease EGP (2). In contrast, studies in dogs did not support the concept of a physiological relevance of CNS insulin action for controlling EGP (7). Figure 1 Brain insulin regulation of hepatic glucose production and adipose tissue lipolysis. The insulin-signaling pathway in the arcuate hypothalamus involves the activation of PI3K and AKT and the subsequent inactivation of FoxO1. Also, the inhibition of AMPK and opening of KATP channels are linked to brain insulin’s peripheral metabolic effects. In addition …

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.