Abstract

The method of transganglionic transport of horseradish peroxidase-wheat germ agglutinin conjugate (HRP-WGA) was used to determine the location within the monkey trigeminal ganglion of the primary afferent neurons that innervate the cornea, and the brainstem and spinal cord termination sites of these cells. In each of four animals. Gelfoam pledgets were saturated with 2% HRP-WGA in saline and applied to the scratched surface of the central cornea for 30 minutes. Postmortem examination of the corneal whole mounts revealed that the tracer solution remained confined to approximately the central one-fourth of the cornea with no spread into the peripheral cornea or limbus. Seventy-two to 96 hours after tracer application, 126-242 labeled cell bodies were observed in the medial region of the ipsilateral trigeminal ganglion. The majority of neurons were concentrated in an area of the ganglion that lay directly caudal to the entering fibers of the ophthalmic nerve, but smaller numbers of cells lay somewhat more laterally, near the region where the ophthalmic and maxillary nerves come together. A very small number of neurons in one animal innervated the cornea by sending their fibers into the maxillary nerve. HRP-WGA-labeled terminal fields were present to some extent in all four major rostrocaudal subdivisions of the ipsilateral trigeminal brainstem nuclear complex (TBNC), but the size of the terminal fields and the intensity of labeling differed markedly from one level of the TBNC to the next. Labeled fibers projected heavily to the transitional zone between caudal pars interpolaris and rostral pars caudalis (i.e., the "periobex" region of the TBNC) and moderately to the trigeminal main sensory nucleus, pars oralis, and caudal pars caudalis at the level of the pyramidal decussation. Remaining areas of the TBNC, including rostral pars interpolaris and the midlevel of pars caudalis, received few, if any, corneal afferent projections. Occasional labeled fibers were observed in the dorsal horn of C1 and in the rostral half of C2. It is hoped that data generated in the current investigation of nonhuman primates will contribute to a better understanding of the neural substrates that subserve corneal sensation and the blink reflex in humans.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.