Abstract

ALS2/alsin, the causative gene product for a number of juvenile recessive motor neuron diseases, acts as a guanine nucleotide exchange factor (GEF) for Rab5, regulating early endosome trafficking and maturation. It has been demonstrated that ALS2 forms a tetramer, and this oligomerization is essential for its GEF activity and endosomal localization in established cancer cells. However, despite that ALS2 deficiency is implicated in neurological diseases, neither the subcellular distribution of ALS2 nor the form of its complex in the central nervous system (CNS) has been investigated. In this study, we showed that ALS2 in the brain was enriched both in synaptosomal and cytosolic fractions, while those in the liver were almost exclusively present in cytosolic fraction by differential centrifugation. Gel filtration chromatography revealed that cytosolic ALS2 prepared both from the brain and liver formed a tetramer. Remarkably, synaptosomal ALS2 existed as a high-molecular weight complex in addition to a tetramer. Such complex was also observed not only in embryonic brain but also several neuronal and glial cultures, but not in fibroblast-derived cell lines. Thus, the high-molecular weight ALS2 complex represents a unique form of ALS2-homophilic oligomers in the CNS, which may play a role in the maintenance of neural function.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.