Abstract
Ionizing radiations were directed at the heads of anesthetized mice in doses that evoked the acute central nervous system (CNS) radiation syndrome. Irradiations were done using either a predominantly thermal neutron field at a nuclear reactor after intraperitoneal injection of 10B-enriched boric acid or 250-kilovolt-peak x-rays with and without previous intraperitoneal injection of equivalent unenriched boric acid. Since 10B concentrations were approximately equal to 3-fold higher in blood than in cerebral parenchyma during the reactor irradiations, more radiation from alpha and 7Li particles was absorbed by brain endothelial cells than by brain parenchymal cells. Comparison of the LD50 dose for CNS radiation lethality from the reactor experiments with the LD50 dose from the x-ray experiments gives results compatible with morphologic evidence that endothelial cell damage is a major determinant of acute lethality from the CNS radiation syndrome. It was also observed that boric acid is a low linear energy transfer radiation-enhancement agent in vivo.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.