Abstract

The use of hyperbaric oxygen (O2) as a therapeutic agent carries with it the risk of central nervous system (CNS) O2 toxicity. To further the understanding of this risk and the nature of its molecular mechanism, a review was conducted on the literature from various fields. Numerous physiological changes are produced by increased partial pressures of oxygen (Po2), which may ultimately result in CNS O2 toxicity. The human body has several equilibrated safeguards that minimize effects of reactive species on neural networks, believed to play a primary role in CNS O2 toxicity. Increased partial pressure of oxygen (Po2) appears to saturate protective enzymes and unfavorably shift protective reactions in the direction of neural network overstimulation. Certain regions of the CNS appear more susceptible than others to these effects. Failure to decrease the elevated Po2 can result in a tonic-clonic seizure and death. Randomized, controlled studies in human populations would require a multicenter trial over a long period of time with numerous endpoints used to identify O2 toxicity. The mounting scientific evidence and apparent increase in the number of hyperbaric O2 treatments demonstrate a need for further study in the near future.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.