Abstract

The neurotoxic effects of neonicotinoids (NEOs) have been widely reported in relation to the poisoning of wild birds, yet the underlying molecular mechanism has remained elusive. This study employed Japanese quails (Coturnix japonica) and primary quail embryonic neurons as in vivo and ex vivo models, respectively, to investigate the neurotoxic effects and mechanism of thiamethoxam (TMX), a representative neonicotinoid insecticide, at environmentally relevant concentrations. Following a 28-day exposure to TMX, metabolomic analysis of quail brain revealed TMX-induced changes in glutamatergic, GABA-ergic, and dopaminergic function. Subsequent ex vivo and in silico experimentation revealed that the activation of nicotinic acetylcholine receptors and calcium signaling, induced by clothianidin (CLO), the primary metabolite of TMX, served as upstream events for the alterations in neurotransmitter synthesis, metabolism, release, and uptake. Our findings propose that the disruption of the central nervous system, caused by environmentally significant concentrations of NEOs, may account for the avian poisoning events induced by NEOs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.